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Abstract. We show that classical localization occurs for the drift–diffusion equation on an
ordered Cayley tree when the drift velocityv on each branch of the tree exceeds a critical value
vc = DL−1 ln(z−1), wherez is the coordination number,D is the diffusion constant andL is the
segment length. Forv < vc the asymptotic decay of the delocalized state exhibits conventional
diffusive behaviour, whereas at the critical pointv = vc there is anomalous behaviour in the form
of a critical slowing-down. A necessary condition for localization in the presence of randomly
distributed drift velocities is also derived.

Physical processes defined on Cayley trees or Bethe lattices exhibit many non-trivial features
whilst remaining analytically tractable, the absence of loops being a key factor. The study of
biased random walks on a Bethe lattice, both in discrete time [1] and continuous time [2, 3],
reveals interesting and indeed anomalous diffusive behaviour. It is interesting, therefore, to
consider how such behaviour manifests itself in an analogous continuum system, namely
the drift–diffusion equation on a Cayley tree.

Consider an unbounded Cayley tree0 with coordination numberz and segment length
L. Choose the origin to be a particular branching nodeα0 ∈ 0 (see figure 1). For each
segmentk of the tree, denote the node closer toα0 by α′(k) and the one further away
by α(k). Introduce a local coordinatex on each segment such thatx(α(k)) = L and
x(α′(k)) = 0. For each branching nodeα label the set of segments radiating from it byIα.
Let Ĩα denote the set of line segmentsk ∈ Iα that radiate fromα in a positivex-direction;
the number of elements of̃Iα is thusz−1. Using these various definitions we can introduce
the idea of a generation. The first generation consists of thez segments61 = {k ∈ Iα0},
the second generation consists of thez(z − 1) segments62 = {l, l ∈ Ĩα(k), k ∈ 61}, etc.

Suppose thatci(x, t), which denotes the concentration at positionx and timet on the
ith segment of the tree, evolves according to the drift–diffusion equation

∂ci

∂t
= D

∂2ci

∂x2
+ v

∂ci

∂x
t > 0 0 < x < L. (1)

Here D is the diffusion constant andv is the drift velocity, which is taken to be inwards
with respect to the originα0 (see figure 1). Equation (1) is supplemented by the boundary
conditions expressing continuity of the concentration at the node,

ci(x(α), t) = ck(x(α), t) for all i, k ∈ Iα t > 0 (2)
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Figure 1. Cayley tree with all drift velocities in the direction of
branching nodeα0.

and conservation of current through the node,∑
i∈Iα

ηiJi(x(α), t) = 0 Ji(x, t) = −D
∂ci

∂x
− vci t > 0 (3)

whereηi = +1(ηi = −1) if x(α) = 0(x(α) = L). For later convenience, we shall denote
the concentration at a nodeα by 8α(t).

In this paper we are interested in the following classical localization problem: given
initial data consisting of a unit impulse located atα0 at time t = 0, what is the asymptotic
behaviour of the on-site amplitude8α0(t)? In the absence of drift, it is clear that the on-site
amplitude8α0(t) decays to zero ast → ∞ due to the effects of diffusion. In other words,
the steady state is delocalized. However, as one switches on a positive inwards drift velocity
v one expects the effects of diffusion away fromα0 to be counteracted by the drift such
that beyond some critical velocityvc there is a non-zero steady state, limt→∞ 8α0(t) 6= 0.
The system is then said to be localized. The critical velocity should increase with the
coordination numberz since the delocalizing effect of diffusion grows withz. An analogous
problem was previously investigated within the context of biased random walks on a Bethe
lattice, both in discrete time [1] and continuous time [2, 3].

Before studying the full time-dependent solution to equations (1)–(3), it is useful to
consider the steady-state case. The steady-state concentrationci(x) on segmenti satisfies

−Ji ≡ D
∂ci

∂x
+ vci = 0. (4)

By symmetry, all segments belonging to the same generation will have an identical solution:
for the z(z − 1)p−1 segments of thepth generation,p > 1, the solution isApe−vx/D. The
coefficientsAp are related by imposing continuity at the branching nodes,Ap+1 = Ape−vL/D.
Hence

ci(x) = A1e−v(pL−L+x)/D i ∈ 6p. (5)

Conservation of particle number implies that∑
i

∫ L

0
ci(x) dx = 1. (6)

Substituting equation (5) into equation (6) then gives

1 = A1zD

v

∞∑
p=0

(z − 1)pe−pvL/D[1 − e−vL/D]. (7)
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Equation (7) leads to the following localization criterion: a non-zero steady state
limt→∞ 8α0(t) = A1 occurs if the infinite series on the right-hand side of equation (7)
is convergent. This yields the critical velocity

vc = D

L
ln(z − 1) (8)

and forv > vc,

lim
t→∞ 8α0(t) = v[1 − (z − 1)e−vL/D]

zD[1 − e−vL/D]
. (9)

In order to determine the rate of decay of the delocalized state at or below criticality, it is
necessary to solve the full equations (1)–(3). One approach would be to Laplace-transform
the drift–diffusion equation on each line segmenti and then to use transfer matrices. We
shall follow a different approach here, which is similar in spirit to one developed within the
context of the linearized Landau–Ginzburg equation describing networks of superconducting
wires [4]. (See also the analysis of Schrödinger’s equation on quantum wire networks [5];
note that Ringwood [6] used transfer matrices to solve the Schrödinger equation on a Cayley
tree but, unfortunately, his final expression for the Green function was incorrect.) The basic
idea is to solve the drift–diffusion equation on each line segment in terms of the as yet
unknown time-dependent functions8α(t) specifying the concentration at the branching
nodesα; the functions8α(t) are then determined self-consistently by imposing current
conservation at each branching node (continuity is automatically satisfied). First, introduce
the initial dataci(x, 0) = δ(x − a)δi,j wherej is a particular segment attached to nodeα0.
(The choice ofj ∈ Iα is unimportant, since we shall eventually take the limita → 0.) An
application of Green’s theorem [7] then gives

ci(x, t) = G(x, t |a, 0)δi,j + D

∫ t

0

[
∂

∂x ′

∣∣∣∣
x ′=0

G(x, t |x ′, t ′)8α′(i)(t
′)

− ∂

∂x ′

∣∣∣∣
x ′=L

G(x, t |x ′, t ′)8α(i)(t
′)
]

dt ′ (10)

where G(x, t |x ′, 0) is the fundamental solution on a finite segment of lengthL with
homogeneous open boundary conditions at both ends. The latter can be calculated explicitly
[7]:

G(x, t |x ′, t ′) =
exp

(
−(x−x ′)v

2D
− v2(t−t ′)

4D

)
√

4πD(t − t ′)

×
∞∑

k=−∞
[e−(x−x ′+2kL)2/4D(t−t ′) − e−(x+x ′+2kL)2/4D(t−t ′)]. (11)

Substitution of equation (10) into the current conservation condition (3) leads to a set of
coupled linear integral equations for the functions8α(t). Performing a Laplace transform
of equations (3), (10) and (11) with

G̃(x, x ′; s) =
exp

(
−(x−x ′)v

2D

)
2Dŝ

e−(x−x ′)ŝ + e−(2L−|x−x ′|)ŝ − e−(x+x ′)ŝ − e−(2L−x−x ′)ŝ

1 − e−2Lŝ
(12)

where ŝ = √
(s + ε)/D and ε = v2

4D
, results in a corresponding set of coupled linear

equations for the Laplace-transformed concentrations8̃α(s). In the limit a → 0, these take
the relatively simple form

1 − H0(s)8̃α0(s) +
∑
k∈Iα0

ḡ(s)8̃α(k)(s) = 0 (13)
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and fork ∈ 6p

−H(s)8̃α(k)(s) + g(s)8̃α′(k)(s) = −
∑

l∈Īα(k)

ḡ(s)8̃α(l)(s). (14)

Here

g(s) = e−Lv/2D

√
(s + ε)D

sinh(L
√

(s + ε)/D)
ḡ(s) = eLv/2D

√
(s + ε)D

sinh(L
√

(s + ε)/D)

H(s) = s
√

(s + ε)D coth
(
L

√
(s + ε)/D

)
− (z − 2)v

2
H0(s) = H(s) − v.

(15)

It is clear from equations (13) and (14) that the solution at every branching nodeα(k)

associated with the same generationp is identical. Thus we set̃8α(k) = 8̃p for all k ∈ 6p,
p > 1. Equations (13) and (14) can then be written in the form

1 − H0(s)8̃α0(s) + zḡ(s)8̃1(s) = 0 (16)

−H(s)8̃p(s) + g(s)8̃p−1(s) + (z − 1)ḡ(s)8̃p+1(s) = 0 p > 1 (17)

where8̃0(s) ≡ 8̃α0(s). The solution of the difference equation (17) is

8̃p(s) =
[
g(s)

λ(s)

]p

8̃α0(s) (18)

where

λ(s) = 1
2

[
H(s) +

√
H(s)2 − 4(z − 1)g(s)ḡ(s)

]
. (19)

Substitution of equation (18) into (16) finally yields the result

8̃α0(s) =
[
H0(s) − zg(s)ḡ(s)

λ(s)

]−1

. (20)

The expression for the Laplace transform8̃α0(s), equation (20), can be used to determine
both the critical velocityvc and the asymptotic behaviour of the on-site amplitude8α0(t) at
the critical point. First, note that limt→∞ 8α0(t) = lims→0 s8̃α0(s). Thus localization
will occur if and only if 8̃α0(s) ∼ s−1 for small s. A necessary but not sufficient
indicator of localization, which will be used later for the disordered Cayley tree, is that
lims→0 8̃(s) = ∞. It is useful to rewrite equation (20) in the form

8̃α0(s) = 2λ(s)

H0(s)
[λ0(s) + λ1(s)]

−1 (21)

with

λ0(s) = H(s) − zg(s)ḡ(s)

H0(s)
λ1(s) =

√
H(s)2 − 4(z − 1)g(s)ḡ(s). (22)

One finds that

λ0(0) =
√

εD

sinhL
√

ε/D
[e−√

ε/DL(z − 1) − e
√

ε/DL] λ1(0) = |λ0(0)|. (23)

Equation (23) implies that ifλ0(0) > 0 then8̃α0(0) 6= 0 and the steady state is delocalized.
On the other hand, ifλ0(0) < 0 then λ0(s) + λ1(s) ∼ s for small s and we do have
localization. Thus the critical velocity is determined from the conditionλ0(0) = 0 and we
recover equation (8). At the critical velocityv = vc, λ1(s) ∼ √

s for small s and this
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will dominate the behaviour of̃8α0(s), that is,8̃α0(s) ∼ 1/
√

s. Therefore, at the critical
velocity v = vc we can apply a Tauberian theorem [8] to deduce that

8α0(t) ∼ 1√
πtD

√
z − 1

z
t → ∞. (24)

Equation (24) shows that the solution exhibits a slower rate of decay than expected for
conventional drift–diffusion. In other words, as found for biased random walks [3], there is
critical slowing down. It is also interesting to note that the critical behaviour is independent
of the segment lengthL.

In order to determine the asymptotic behaviour of the on-site amplitude8α0(t) below
the critical point(v < vc), we need to invert equation (20). In the simple casez = 2, the
Cayley tree reduces to two semi-lines joined at the originx = 0 with drift velocities moving
towards the origin. Then equation (20) becomes

8̃α0(s) = 1

2
√

(s + ε)D − v
(25)

which is easily inverted to yield

8α0(t) = 1

2

[
e−v2t/4D

√
πtD

+ v

2D
erfc

(−v

2

√
t

D

)]
(26)

where erfc(x) = 2π−1/2
∫ ∞
x

e−y2
dy. It follows from equation (26) that limt→∞ 8α0(t) =

v/2D for v > 0 and limt→∞ 8α0(t) = 0 for v < 0, which agrees with equations (8) and (9)
whenz = 2. The asymptotic behaviour of the delocalized state is

8α0(t) ∼ 1

2
√

πtD
v = 0

8α0(t) ∼ 2D2

√
πv2

e−v2t/4D

(Dt)3/2
v < 0.

(27)

Inverting equation (20) whenz > 2 requires performing a Bromwich contour integral.
It can be shown that forv < vc the function8̃α0(s) has an infinite set of branch points
along the negative real axis of the complexs-plane. These are given bys = X2 − ε where
X is a root of the transcendental equation

coshX − vL

2D

z − 2

z

sinhX

X
= ±2

√
z − 1

z
. (28)

Equation (28) has an infinite number of imaginary roots and at most one real root.
The asymptotic behaviour of8α0(t) below criticality arises from the contribution to the
Bromwich integral in the region of the branch point closest tos = 0. (As v → vc this
branch point approachess = 0 resulting in the 1/

√
s behaviour at criticality.) We find that

for large t and forv < vc such that a real rootX1 of equation (28) exists,

8α0(t) ∼
(

KXX1
√

z − 1

2zπDt3

)1/2 exp
(
−

[
v2

4D
− DX2

1
L2

]
t
)

[
v2

4D
− DX2

1
L2

]
sinhX1

(29)

where

KX = sinhX1 − vL

2D

z − 2

z

(
coshX1 − sinhX1

X1

)
. (30)
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Note that asv decreases,X1 → 0 and then becomes imaginary. Thus forv sufficiently
below the critical point, there is no real root of equation (28) and the asymptotic behaviour
is dominated by the smallest magnitude imaginary rootX1 = iY1. Then

8α0(t) ∼
(

KY Y1
√

z − 1

2zπDt3

)1/2 exp
(
−

[
v2

4D
+ DY 2

1
L2

]
t
)

[
v2

4D
+ DY 2

1
L2

]
sinY1

(31)

with

KY = sinY1 − vL

2D

z − 2

z

(
cosY1 − sinY1

Y1

)
. (32)

Note that ifz = 2 thenKX = sinhX1 andX1 → 0 such that(KXX1)
1/2/ sinhX1 → 1, and

we recover equation (27).
So far we have assumed that the drift velocity is identical on all segments of the tree.

Now suppose that the drift velocityvi on branchi is independently chosen at random from
a given probability densityρ(v). In the one-dimensional case,z = 2, this problem is
completely solvable analytically (see Bouchaud and Georges [9] and references therein).
Aslangul et al [10] have extended the one-dimensional analysis to the case of a biased
random walk on a directed Bethe lattice where particles can only move in the direction
of increasing generation number. Unfortunately, the latter does not yield a drift–diffusion
equation in the continuum limit and the analysis breaks down. Nevertheless, it is possible
to make some progress by considering a slightly easier problem; assume that for each
generationp, vi = vp for all i ∈ 6p with vp independently chosen at random fromρ(v).
In other words, there is intergenerational but not intragenerational randomness.

In order to investigate the onset of localization, we shall calculate the average Laplace
transform 〈8̃p(0)〉. Following the analysis of one-dimensional continuous-time random
walks [9], we define

U−1 = lim
p→∞(z − 1)p〈8̃p(0)〉 (33)

with U interpreted as an asymptotic particle velocity; a necessary but not sufficient criterion
for localization is thatU vanishes. To determineU , we first Laplace-transform equation (1)
assuming initial data in the form of an impulse atα0:

d

dx

(
D

dc̃p(x, s)

dx
+ vpc̃p(x, s)

)
= −δp,1δ(x) + sc̃p(x, s) (34)

where, by symmetry,ci = cp for all i ∈ 6p. Equation (34) is supplemented by the current
conservation condition

D
dc̃p(L, s)

dx
+ vpc̃p(L, s) = +(z − 1)

[
D

dc̃p+1(0, s)

dx
+ vp+1c̃p+1(0, s)

]
. (35)

Setting s = 0 and then integrating equation (34) yields, when current conservation is
incorporated,

D
dc̃p(x, 0)

dx
+ vpc̃p(x, 0) = − 1

(z − 1)p
. (36)

This has the solution

c̃p(x, 0) = 8̃p(0)e−vpx/D − 1

vp(z − 1)p
[1 − e−vpx/D]. (37)
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Continuity at the branching nodes gives the first-order difference equation

Bp = evpL/D − 1

vp

+ evpL/D

z − 1
Bp+1 Bp = (z − 1)p8̃p(0). (38)

Iterating equation (38),

Bp = evpL/D − 1

vp

+
N−1∑
j=1

evp+j L/D − 1

vp+j

j−1∏
k=0

evp+kL/D

z − 1
+

N−1∏
k=0

evp+kL/D

z − 1
Bp+N. (39)

Averaging equation (39) with respect toρ(v),

〈Bp〉 =
〈

evL/D − 1

v

〉 {
1 +

N−1∑
k=1

〈
evL/D

z − 1

〉k }
+

〈
evL/D

z − 1

〉N

〈Bp+N 〉. (40)

Finally, taking the limitN → ∞ we have

〈Bp〉 = ∞ if

〈
evL/D

z − 1

〉
> 1

〈Bp〉 =
〈

evL/D − 1

v

〉 〈
1 − evL/D

z − 1

〉−1

if

〈
evL/D

z − 1

〉
< 1.

(41)

(Note that intergenerational disorder in the coordination number is also handled by the above
analysis.)

Assuming that the weak criterion for localization(U = 0) is valid, equation (41)
implies that classical localization for the drift–diffusion equation on a disordered Cayley
tree with intergenerational randomness can only occur when〈evL/D〉 > (z − 1). As an
example, consider the Bernoulli distributionρ(v) = pδ(v − v̄)+ (1−p)δ(v + v̄). A simple
calculation shows thatU vanishes if and only if̄v > vc(p) where

vc(p) = D

L
ln

{
z − 1 +

√
(z − 1)2 − 4(1 − p)p

2p

}
. (42)

Finally, we point out that certain care must be taken over the interpretation of
equation (41), since we have not established that the asymptotic particle velocityU is self-
averaging. However, by analogy with results from continuous-time random walks [9, 10],
we expect that self-averaging does hold. In order to prove this, we would need to determine
the behaviour of the solution〈8̃p(s)〉 for non-zeros. This would require extending some
of the techniques of one-dimensional random walks [9]. Alternatively, one might be able to
exploit certain formal similarities between the recursive equations (13) and (14) and those
derived for Ricatti variables associated with the Anderson model on a Cayley tree [11].
This will be considered in more detail elsewhere, together with other issues such as the
effects of intragenerational disorder.
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